PHYSICAL CHARACTERIZATION

Density
Surface Area
Porosimetry

$$
P \cdot V=n \cdot R \cdot T \quad \mathrm{~V}_{\mathrm{SAMP}}=\mathrm{V}_{\mathrm{CELL}}-\frac{\mathrm{V}_{\mathrm{EXP}}}{\frac{\mathrm{P}_{1 \mathrm{~g}}}{\mathrm{P}_{2 \mathrm{~g}}}-1}
$$

Accupyc 1330

- This equipment consists of two chambers of known volume separated by a valve.
- The sample displaces a certain volume equivalent to the volume of the studied sample.
- Knowing the mass or weight of the sample, its density can be calculated.

$$
\rho=\frac{M}{V}
$$

- The range that this equipment can measure is between $1 \mathrm{~cm}^{3}$ and $10 \mathrm{~cm}^{3}$.
- Helium can only penetrate open pores.
- Non destructive technique.
- Time of experiment $=30-40 \mathrm{~min}$.
- Common errors:
- DTA_WRN: volume 10\% full-scale: the amount of sample placed is too small.
- ANSERR: overrange /underrange: adjust the pressure of the helium.

SURFACE AREA

- This technique can measure specific surface area and porosity distribution.
- BET theory (Brunauer-Emmett-Teller): to calculate the specific area. This theory assumes that a gas, such as nitrogen, when is liquefied and absorbed on clean solid surfaces, will fill the entire available surface into multiple layers. At low pressure a monolayer is formed (between 0.05 and 0.3 relative pressure).
- Smaller pores fill at low pressures and larger pores at larger pressures

SURFACE AREA

- The solid is degassed, and cooled to $-196^{\circ} \mathrm{C}$. Nitrogen gas is introduced and adsorbed.
- Progressive nitrogen P / P_{0} ratios are used
- If we measure with nitrogen, the total area must be greater than $1 \mathrm{~m}^{2}$.
- If we have smaller surface area Krypton can be used.
- The BJH (Barret Joyner Halenda) theory is used to analyze the distribution of mesoporosity
- HK theory is used to analyze the distribution of microporosity.
- At the degassing stage, the sample can be heated to $350^{\circ} \mathrm{C}$.
- Non destructive technique
- Time of anaylsis:
- Sample degasification : 24h

Clasificación de la porosidad según el tamaño de poros por la IUPAC (Unión Internacional de Química Pura y Aplicada)

- Microporos: tienen un tamaño inferior a 2 nm .
- Mesoporos: tienen un tamaño de poros comprendido entre 2 y 50 nm .
- Macroporos: tienen un tamaño mayor a 50 nm .
- Sample analysis:
- Surface area=5-6h
- BJH=24h
- $\mathrm{HK}=72 \mathrm{~h}$

SURFACE AREA

Measuring range: From 0.3 nm to 300 nm

BET area results
-The correlation coefficient must have at least 4 nines.
-The coefficient C must be positive. Indicates when a monolayer is no longer available.

Sample type:
-Solids: The sample holder has a diameter of 7 mm . The bottom sphere of the sample holder must be filled.
-Powder.

How much sample?

- Enter as many samples as you can to get at least $1 \mathrm{~m}^{2}$ in total.

Error:

Total Surface Area in Sample Tube, m^{2}								
0.2	0.5	1	2	5	10	20	50	100
190%	76%	38%	19%	7.6%	3.8%	1.9%	0.76%	0.38%

- Mercury intrusion porosimetry is a technique that, by applying pressure, forces the entry of mercury into the pores of a solid or powder.
-Applied pressure and pore inlet diameter are related to the Wasburn equation.
-Wasburn described the behavior of a non-wettable liquid.

- Mercury is the only liquid that does not wet and therefore cannot enter the pores by capillary action. It must be forced.
-The force done to enter the pores is inversely proportional to the pore inlet size.

$$
D=\frac{-4 \gamma \cos \theta}{P}
$$

$$
\begin{aligned}
& \gamma=\text { superficial tension } \\
& \text { (constant) } \\
& \theta=\text { contact angle (constant) }
\end{aligned}
$$

POROSIMETRY

-The equipment used is the AUTOPORE IV 9500 (micromeritics).
-The material must be rigid enough so that it does not bend when the mercury enters.

- Only by open and interconnected pores
-Destructive and toxic method.
-This technique measures the inlet diameter of the pores.
-The sample must be dry.
-An approximation is made: cylindrical pores are assumed.
-Samples can be analyzed in powder and solid format.
-The sample holder has a size of: diameter $=15 \mathrm{~mm}$ and height $=10 \mathrm{~mm}$.
- How much sample? Enter as much sample as possible so that the percentage of mercury entering the sample is between 25% and 90% of the volumen of the stem.

POROSIMETRY

-Measuring range: From 0.006um to 360um
-Pressure range:
Low pressure: up to 30 psi-14um-360um
High pressure: up to 30000 psi - 6 nm -14um

-Time analysis:
-Low pressure = 1h
-High pressure $=2 h$
-The sample must be dry, non compressible.

THANK YOU FOR YOUR ATTENTION

https://biomaterials.upc.edu/ca

Cómo representar la distribución de tamaño?

Representar dV / dlog (r) como el eje de ordenadas asegura que los cuadrados representen el mismo volumen, y así permitir una interpretación correcta de la PSD.
?

Mercury intrusion porosimetry ($30 \mathrm{~nm}-1100 \mu \mathrm{~m}$)

$$
\text { Gas adsorption (} 0.3 \mathrm{~nm}-300 \mathrm{~nm} \text {) }
$$

Micropores (<2 nm) Mesopores (2-50nm) Macropores (>50nm)

0.1	1	10	100	1000	10000	100000	1000000
			nanometers	$1 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$	$100 \mu \mathrm{~m}$	1 mm

